

Tetrahedron Letters 41 (2000) 4559-4562

TETRAHEDRON LETTERS

ortho-Prenylphenol photooxygenation as a straightforward access to *ortho*-(2-hydroxy-3-methylbut-3-enyl)phenols

Jean-Jacques Helesbeux, David Guilet, Denis Séraphin,* Olivier Duval, Pascal Richomme and Jean Bruneton

SONAS, UFR des Sciences Pharmaceutiques et Ingénierie de la Santé, 16 Bd Daviers, 49100 Angers, France

Received 28 March 2000; accepted 14 April 2000

Abstract

Photooxygenation (${}^{1}O_{2}$) of *ortho*-prenylphenols followed by a reduction (PPh₃) at low temperature (-30°C) yields a mixture of *ortho*-(2-hydroxy-3-methylbut-3-enyl)phenols and *ortho*-(3-hydroxy-3-methylbut-1-enyl)phenols. However, by running the two-step sequence at a higher temperature (15°C), the secondary allylic alcohol could be selectively recovered. © 2000 Elsevier Science Ltd. All rights reserved.

As part of our continuous search for new biologically active natural products, we recently reported on a bioassay-directed fractionation of extracts from *Mesua racemosa*,¹ and *Calophyllum dispar*.² This work resulted in the selection of several *ortho*-prenylphenols as the most active compounds against various neoplasic cell lines. Among them, allylic alcohols such as *ortho*-(2-hydroxy-3-methylbut-3-enyl)phenol derivatives retained our attention. Due to their pharmacological interest and their low concentration in plant extracts, we needed a straightforward synthetic access to this type of derivative.

If the supposed biogenetic pathway leading to these compounds consists of an oxidation from the corresponding *ortho*-prenylphenol,³ such a direct synthesis has never been reported. The transformation of a prenyl chain into a 2-hydroxy-3-methylbut-3-enyl appendage is only described for protected *ortho*-prenylphenols and relies either on a epoxide rearrangement² or on a photo-oxygenation.⁴ In the latter method, singlet oxygen ${}^{1}O_{2}$ reacts with an olefin bearing allylic hydrogens in the so-called Schenck-ene reaction and leads via a double bond shift to an allylic hydroperoxide.⁵ Then, the corresponding allylic alcohol is obtained by a quantitative reduction of this hydroperoxide.

Due to the mild oxidation conditions used during this photooxygenation process, we thus imagined that, applied to unprotected *ortho*-prenylphenols, the method could represent a new and straightforward access to 2-(2-hydroxy-3-methylpent-3-enyl)phenols. Before embarking on a totally natural product synthesis, we therefore decided to study this oxidation on a simpler model in the dihydroxyacetophone series.

^{*} Corresponding author. E-mail: denis.seraphin@univ-angers.fr

Photooxygenation of phenol 1 (Scheme 1), using tetraphenylporphin (TPP) as the photosensitizer, was first conducted at low temperature (-30° C). After PPh₃ reduction at the same temperature, two allylic alcohols **3a** and **3b** were obtained in 65 and 28% yield, respectively. The prenyl side chain was thus oxidized in 93% yield and no other product could be isolated.

Scheme 1. (a) O_2 , TPP, $h\nu$, CH_2Cl_2 ; (b) PPh₃, CH_2Cl_2

Surprisingly, when the photooxygenation followed by the reduction was run at a higher temperature (15°C), **3b** was not recovered and alcohol **3a** was the sole isolated product in 66% yield. As the yield in **3a** was unchanged in both experiments, we suspected that the intermediate leading to **3b** could be unstable. To confirm this hypothesis, we analyzed the photooxidation (-30° C) products by low-temperature NMR spectroscopy. As expected, the ¹H NMR spectrum revealed in the mixture the presence of 67% of **2a** and 29% of **2b**. The mixture was then stirred for 3 h at 20°C before PPh₃ reduction and the secondary allylic alcohol **3a** was consequently isolated as the sole product in 65% yield. This experiment thus proved the thermal instability of the highly conjugated tertiary hydroperoxide **2b**.

As a consequence, the degradation of the tertiary hydroperoxide could be turned to our advantage: by running the two-step sequence at a sufficiently high temperature $(15^{\circ}C)$, secondary alcohols 5 could be selectively synthesized (Scheme 2).

Scheme 2. (a) O₂, TPP, hv, CH₂Cl₂, 15°C; (b) PPh₃, CH₂Cl₂, 20°C

The scope of this reaction was further studied on different related derivatives (Table 1). This oxidation could therefore be generalized, not only to diphenolic *ortho*-prenylphenols (Table 1, entries 1–4) but also to monophenols (Table 1, entries 5–9) with yield ranging from 43 to 84%. The lowest yield observed (Table 1, entry 5) may be explained by the *para*-alkylphenol sensibility to ${}^{1}O_{2}$ leading to 4-hydroperoxycyclohexa-2,5-dien-1-one derivatives.⁶ However, it should be noted that alcohol **5** was always the only product that could be isolated except when using a biphenyl compound as the starting material (Table 1, entry 6). In this case, a higher temperature would be necessary to degrade the tertiary hydroperoxide.

Entry	R ₁	R ₂	R ₃	R ₄	Yield 5
					%
1	COCH ₃	Н	Н	OH	66
2	Н	OH	COCH ₃	Н	84
3	COCH ₃	OH	Н	Н	65
4	COCH_3	Н	CH ₂ -CH=C(CH ₃) ₂	OH	56 ^a
5	Н	Н	CH ₃	Н	43
6	Н	Н	Ph	Н	56 ^b
7	Н	Н	COCH ₃	Н	58
8	Н	Н	C1	Н	51
9	Н	Н	Br	Н	44

Table 1ortho-Prenylphenol photooxygenation at 15°C via Scheme 2

^aAs a bis(2-hydroxy-3-methylbut-3-enyl) derivative.

^bAccompanied by 2-(3-hydroxy-3-methylbut-1-enyl)-4-phenylphenol in 32% yield

In summary, we have shown that by a careful choice of the temperature, *ortho*-(2-hydroxy-3-methylbut-3-enyl)phenols could be selectively isolated by photooxygenation of a wide variety of *ortho*-prenylphenols, and this without the need of any phenolic protecting group. We have also noted the thermal instability of the tertiary hydroperoxide that probably explains the absence of *ortho*-(3-hydroxy-3-methylbut-1-enyl)phenol derivatives in plant extracts. Thus, this method could be applied to synthesize natural *ortho*-(2-hydroxy-3-methylbut-3-enyl)phenol^{3,7} and is currently being extended by us in the coumarin field.

References

- (a) Morel, C.; Dartiguelongue, C.; Youhana, T.; Oger, J.-M.; Séraphin, D.; Duval, O.; Richomme, P.; Bruneton, J. *Heterocycles* 1999, *51*, 2183–2191. (b) Morel, C.; Guilet, D.; Oger, J.-M.; Séraphin, D.; Sévenet, T.; Wiart, C.; Hadi, A. H. A.; Richomme, P.; Bruneton, J. *Phytochemistry* 1999, *50*, 1243–1247.
- Guilet, D.; Morel, C.; Noyer, N.; Cornec, M.; Séraphin, D.; Wiart, C.; Hadi, A. H. A.; Sévenet, T.; Richomme, P.; Bruneton, J. *Heterocycles* 1999, *51*, 67–76.
- Chan, J. A.; Shultis, E. A.; Carr, S. A.; Debrosse, C. W.; Eggleston, D. S.; Francis, T. A.; Hyland, L. J.; Johnson, W. P.; Killmer, L. B.; Staiger, D. B.; Westley, J. W. J. Org. Chem. 1989, 54, 2098–2103.

- (a) Murray, R. D. H.; Forbes, I. T. *Tetrahedron* 1978, 34, 1411–1414. (b) Murray, R. D. H.; Zeghdi, S. *Phytochemistry* 1989, 28, 227–230. (c) Ito, C.; Furukawa, H. *Chem. Pharm. Bull.* 1989, 37, 819–820. (d) Ito, C.; Fujiwara, K.; Karta, M.; Ju-Ichi, M.; Takemura, Y.; Suzuki, Y.; Tanaka, K.; Omura, M.; Furukawa, H. *Chem. Pharm. Bull.* 1991, 39, 2509–2513.
- 5. Schenck, G. O. Naturwissenschaften 1948, 35, 28-29.
- (a) Adam, W.; Lupon, P. Chem. Ber. 1988, 121, 21–25. (b) Wasserman, H. H.; Pickett, J. E. Tetrahedron 1985, 41, 2155–2162. (c) Abou-Elzahab, M. M.; Adam, W.; Saha-Möller, C. R. Liebigs Ann. Chem. 1991, 967–970.
- (a) Pistelli, L.; Bertoli, A.; Giachi, I.; Manunta, A. J. Nat. Prod. 1998, 61, 1404–1406. (b) Lee, S. J.; Wood, A. R.; Maier, C. G. A.; Dixon, R. A.; Mabry, T. J. Phytochemistry 1998, 49, 2573–2577. (c) Ngadjui, B. T.; Dongo, E.; Tamboue, H.; Fogue, K.; Abegaz, B. M. Phytochemistry 1999, 50, 1401–1406.